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Abstract
The transmission of guided modes through a barrier of Kerr nonlinear optical media contained
within a photonic crystal waveguide of linear dielectric media is studied in order to determine
the effects of the dispersion of the incident waveguide modes on their barrier transmission
coefficients. In McGurn (2008 Phys. Rev. B 77 115105) the conditions under which resonances
exist in the guided mode transmission through the barrier were investigated for an incident
waveguide mode having a single fixed frequency and a wavevector near the edge of the
Brillouin zone. The transmission coefficient maxima were determined as functions of two
parameters characterizing the Kerr nonlinearity of the barrier media and shown to exhibit a
complex pattern in the two parameter space of the Kerr parameters, associated with various
kinds of modes excited within the barrier. In the present paper the focus is on how the pattern of
transmission resonance maxima in the two parameter Kerr parameter space is affected by
varying the wavevector and frequency of the guided modes incident on the barrier. In addition,
the effects of the barrier size on the pattern are determined. The focus of the paper is on
affirming the classification scheme proposed in our previous papers upon the introduction of
dispersive effects. The dynamical equations of our model are quite general, so it is expected that
this scheme will be useful in studying the nonlinear dynamics of other nonlinear physical
models which may or may not be based on photonic crystal waveguides.

1. Introduction

Recently we have proposed a scheme for the classification of
modes that are resonantly excited in nonlinear barriers and
waveguide junctions [1, 2]. Specifically, in photonic crystal
waveguides, the transmission characteristics of guided modes
incident on barriers in waveguides or junctions of waveguides
can be studied as functions of the dielectric properties of the
barrier media. For barriers and waveguide junctions made
from linear dielectric media the transmission resonances are
associated with Fabry–Perot modes excited within the barrier.
If the barriers and junctions are made from nonlinear systems
(e.g., Kerr nonlinear dielectric media) the resonant excitation
structures, studied in the parameters characterizing the Kerr
media, develop a very complex system of excitations when
studied as functions of the nonlinear barrier media. The work
in [1, 2] showed how the resonantly excited modes within the
barrier can be classified and understood. It did this for an

incident waveguide mode with a frequency in the center of
the stop band of a photonic crystal and with a wavenumber
at the Brillouin zone edge of the photonic crystal waveguide.
The work presented here generalizes the studies in [1, 2]
to determine the transmission through barriers of nonlinear
media as a function of general guided mode frequency and
wavenumber. We show that many of the properties found
in our earlier work are robust with changes in the guided
mode dispersion. The classification scheme discussed here
was shown to be applicable to a variety of nonlinear systems,
including biological population models. However, we will not
go into these in this paper, but will focus on photonic crystal
waveguides, using a difference equation treatment that was
developed by us over the last fifteen years. First a brief general
discussion of photonic crystal waveguides and barriers is given.
This is followed by a summary of some results in the study
of nonlinear dynamics, a summary of results in [1, 2], and an
outline of their generalization made in this paper.
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Yablonovitch [3] first proposed photonic crystals as
periodic arrays of optical dielectric materials. The periodic
nature of the system creates a series of frequency pass and
stop bands so that the photonic crystal acts as a filter or as a
means to block and mold the flow of electromagnetic energy in
space [4–11]. Electromagnetic fields at a stop band frequency
decay in intensity as they penetrate the photonic crystal and are
reflected from its bulk. The optical properties of the system are
similar to the electronic properties of a semi-conductor [12].
By introducing impurities into a semi-conductor, electronic
donor and acceptor levels can be created in a stop band, or with
the introduction of many impurities, impurity bands are created
within the stop band. Similarly, adding a line of dielectric
impurities in a photonic crystal can create a waveguide with
guided modes moving along it at frequencies that do not allow
propagation into the bulk photonic crystal [4–9, 11]. Through
the addition to the waveguide of additional impurities barriers
are formed in the waveguide. Photonic crystal waveguides
have been the subject of a large number of studies which have
been summarized in various texts and reviews [4–9, 11]. These
focus on the transport of electromagnetic energy and its up-
and down-load at a variety of different frequencies [13, 14].
While most of this work has focused on systems formed of
linear dielectric media, in more recent times there have been a
number of efforts attempting to incorporate features involving
nonlinear dielectric media in the study of various waveguide
geometries [15–18, 22]. These are generally focused on the
design of systems exhibiting a characteristic that would fulfil
a device application or treat nonlinear photonic crystals as
a whole or to determine the behavior of the system over
some limited range of parameters [23–38]. The discussions
here will focus on the general types of excitations that can
be excited in barriers of nonlinear media contained within
linear media waveguides, giving a general and extensive survey
of the parameter space of the barrier system [1, 2]. A
consequence of this will be that most of our discussions
center on understanding the conditions under which intrinsic
localized modes, dark soliton like excitations, and Fabry–
Perot modes can exist in these systems [18–21, 26]. The
difference equation approach used in our studies is of a simple
and very general form that may have applications to other,
non-photonic crystal, physical systems, i.e, mechanical and
biological systems [39–43].

Recently we have discussed the nature of the modes
resonantly excited inside a barrier of nonlinear optical media
contained within a photonic crystal waveguide [1, 2]. The
barrier modes are resonantly excited through the scattering of
guided modes by the barrier and are observed as transmission
peaks of the guided modes through the barrier material. The
system considered was a two-dimensional photonic crystal
formed as a square lattice array of linear media dielectric
cylinders [44], and the waveguide of linear dielectric media
and barrier of Kerr nonlinear dielectric media were formed by
cylinder replacement along a row of cylinders in the photonic
crystal. The dielectric properties of the Kerr nonlinear optical
material of the barrier in these studies is characterized by two
parameters [1]. One parameter gives the dielectric constant
of the Kerr material in the limit of zero applied electric field

and the other gives the dependence of the Kerr dielectric
constant on the intensity of the applied electric field. By
studying the transmission characteristics of guided modes
through the Kerr barrier, the transmission intensity maxima
were associated with the excitation of resonant modes within
the barrier. These excited modes could easily be identified as
Fabry–Perot modes, intrinsic localized modes, dark soliton like
modes, etc [1]. A mapping of the transmission maxima within
the two-dimensional parameter space of the Kerr parameters
allowed for the association of mode types resonantly excited
within the barriers (i.e., intrinsic localized modes, etc) with
features occurring in the pattern of transmission resonances
in the two-dimensional Kerr parameters space. The results
presented in these discussions considered only a single incident
guided mode with a wavenumber near the edge of the
waveguide Brillouin zone. Consequently, the effects of
guided mode dispersion on the resonant transmission were
not investigated. In the present paper we study the effects
of waveguide dispersion (frequency and wavenumber) on the
map of resonant transmission in the two-dimensional Kerr
parameter space. A specific focus will be the effects of guided
mode dispersion on Fabry–Perot, intrinsic localized modes,
and dark soliton modes excited in the barrier. In addition,
our original study treated a barrier of five Kerr nonlinear sites
and the barrier size in the present work consists of seven Kerr
nonlinear sites. This allows us to understand the effects of
barrier size on the resonant transmission and the robustness
of our previously proposed mode classification scheme based
on ideas developed in the study of solutions of nonlinear
dynamical equations.

The solutions of most nonlinear equations exhibit a
high degree of complexity such that a popular method of
approaching an understand of their solutions is to represent
them graphically in an appropriate phase space [40]. Such
graphical representations allow for a classification of solution
types within the phase space. This was the original idea
of Poincare mappings and variations of these type of ideas
have a long history in terms of the study and classification of
patterns generated from nonlinear mappings [41–43, 45–48].
Well known examples are found in the study of chaos where
the understanding of the nature of solutions and their stability
with respect to various fix points and attractors characterize
the dynamics of nonlinear systems [41–43]. Other types of
patterns found in chemical and biological systems are the
Turing patterns [41, 45–47]. Here the complexity in the pattern
of solutions arises from the interplay of the rate of diffusion
and reactive transitions in various inhomogeneous processes.
From the standpoint of programs and algorithms, Wolfram [48]
has more recently shown that amazingly complex patterns
are generated from small sets of short, compact, recursive
rules. The complex behavior follows from the straightforward
application of a simple rule over and over again. The common
element in all of these studies is that fundamental changes in
the dynamics of a system come from the introduction of very
simple nonlinearities, even at the level of perturbations and
that the nonlinear dynamics of the system can be graphically
portrayed. These ideas will be continued here to a classification
of the barrier transmission resonances in waveguide systems
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and a determination of the effects of guided mode dispersion
on the transmission resonances.

The investigation of the modes resonantly excited in the
Kerr nonlinear barrier media of our waveguide system in the
two parameter space characterizing the Kerr material is an
important characterization of the system. It allows for a better
understanding of the necessary conditions for various types
of barrier excitations to be observed and, in addition, gives
a general indication of what type of modes can be excited
in the barrier [1, 2]. These excitations, aside from basic
research interest, have a number of practical applications, e.g.,
in switching and other interactive operations [1, 2, 4–10]. For
the studies presented here we will use a difference equations
treatment developed in a number of previous works for the
study of the behavior of modes in photonic crystal circuit
applications [49, 50, 19, 51, 52, 20].

In section 2, a brief summary of the difference equation
theory of the barrier is given followed by discussions of
the transmission coefficient patterns in the parameter space
of the Kerr medium. The nature of the excitations in the
barrier at transmission resonances are discussed. In section 3,
conclusions are presented.

2. Barrier equations and results

The transmission through a barrier of Kerr nonlinear media
within a waveguide of linear dielectric is studied [49]. To
the left of the barrier, the waveguide contains the incident
and reflected modes and the transmitted mode is carried in the
waveguide to the right of the barrier. The photonic crystal is a
square lattice array in the x–y plane made [53] of parallel axis
cylinders and the waveguide is along the x-axes [49, 50, 52]
formed by consecutive cylinder replacement. The barrier
consists of seven consecutive replacement cylinders in the
waveguide that contain Kerr nonlinear media. (See figure 1.)
The model was originally discussed in [49] and [50]. The
waveguide and barrier system is composed of replacement
cylinders differing from the cylinders of the bulk photonic
crystal through the addition of a small amount of dielectric
material about the axes of each replacement cylinder. The
electric field of the guided modes is separately constant over
the added material in each replacement cylinder so that the
electric fields at the centers of the replacement cylinders are
related to one another by a set of difference equations. These
equations allow for the solutions of the waveguide modes and
the transmission coefficients through the Kerr barrier [49]. For
a detailed discussion of the origin of the difference equations
the reader is referred to [52, 20], and a brief outline of the
discussions given there is summarized in appendix.

2.1. Review of the model equations

The waveguide and barrier are characterized by a set of
difference equations. For the waveguide along the x-axis [49]

En,0 = gl[En,0 + b(En+1,0 + En−1,0)] (1)

for |n| > 5, for the barrier of seven sites

En,0 = g[(1 + λ|En,0|2)En,0 + b(1 + λ|En+1,0|2)
× En+1,0 + b(1 + λ|En−1,0|2)En−1,0] (2)

Figure 1. Schematic drawing of: (a) two-dimensional photonic
crystal. The dielectric cylinders are perpendicular to the plane. The
light moves in the plane and is polarized with the electric field
parallel to the cylinder axes. (b) Photonic crystal waveguide
containing a barrier of Kerr nonlinear media. The open circles
represent the linear media cylinders of the waveguide and the circles
with the dot are the cylinders of the barrier. The cylinders of the
photonic crystal are represented by black circles.

for |n| < 3, and the waveguide and barrier connect to one
another through

E±3,0 = g[(1 + λ|E±3,0|2)E±3,0 + b(1 + λ|E±2,0|2)E±2,0]
+ glbE±4,0 (3)

and

E±4,0 = gl[E±4,0 + bE±5,0] + gb(1 + λ|E±3,0|2)E±3,0. (4)

Here Em, j is the electric field at the (m, j) lattice site which
is polarized parallel to the cylinder axes, gl characterizes
the properties of the dielectric cylinders in the linear media
waveguides, g and λ �= 0 characterize the properties of the
dielectric cylinders in the barrier of Kerr media, and b is
the coupling between the electric fields on nearest neighbor
lattice sites of the waveguide. (See appendix for more details
about the difference equations formulation and for detailed
expressions for b in terms of Green’s functions of the equations
for the electric field modes of the photonic crystal and the
dielectric constants of the waveguide and photonic crystal.)
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The solution for the transmitted mode in the waveguide to
the right of the barrier is of the form [49]

En,0 = r xeikn (5)

for n > 3 where r and x are real, and in the incident waveguide
channel to the left of the barrier

En,0 = ueikn + ve−ikn (6)

for n < −3. In the barrier media the field at each site is
a complex number satisfying the difference equations. The
transmission coefficient is T = |r x/u|2 which is obtained
as a function of g and r for fixed λx2 characterizing the
nonlinearity. The solutions in the discussions below are made
for parameters used in [49]. Specifically, λx2 = 0.001,
gl = 1/[1 + 2b cos(k)], and for a frequency ωac/2πc = 0.440
in the middle of the 0.425 < ωac/2πc < 0.455 stop band
of the photonic crystal used in those studies b = 0.0869.
(Note: here ac is the lattice constant of the photonic crystal,
and the b at other frequencies in the stop band are given later
in the paper by equation (7) which is from [52]. The reader
is referred to the appendix for the parameter of the photonic
crystal and waveguide and their relationship to the parameters
of the difference equations.) Results will be presented in our
studies for various k = 2.90, 1.50, 0.75, 0.25.

It is important to note that the wavenumber and energy
of the incident guided modes are set by the properties of the
waveguide cylinders. (The cylinders of the bulk 2D photonic
crystal and the barrier do not affect these attributes of the
guided modes and remain fix with changing guided mode
frequency and wavenumber.) Consequently, to vary ω and k
of the incident guided mode gl and/or b, which are determined
from the dielectric properties of the waveguide cylinders, must
change so that gl = 1/[1 + 2b cos(k)] is satisfied. The natural
parameters used to study scattering are those of frequency
and wavenumber so that the later discussions will focus on
these. It should be noted that waveguides formed by cylinder
removal rather than by cylinder replacement to do not exhibit
this flexibility in frequency and wavenumber.

2.2. Nonlinear transmission coefficient

The transmission coefficient, T , of the barrier is studied as
a function of the parameters of the nonlinear media (i.e.,
(r, g)) and the dispersion in wavenumber and frequency
of the incident waveguide modes. For fixed wavenumber
and frequency the transmission coefficient is computed as a
function of g and r , giving a series of resonant transmission
peaks [49] in (r, g) space. In the limit that r → 0+ the
media in the barrier is linear dielectric media (Note: the linear
system is obtained for λ = 0 but this is the same limit
obtained in our theory for an infinitesimally small r .), and
the nonlinearity of the barrier media increases as r increases
from zero. In the following, discussions are given of the
transmission peaks found in the (r, g) parameter space for
a set of waveguide modes with different wavenumbers and
frequencies. The different features found in the (r, g) plot
of transmission intensity maxima are associated with different

Figure 2. Plots of the barrier transmission, T , in the linear media
limit (i.e., λ = 0 limit) as a function of g of the barrier medium for:
(a) k = 2.9 (solid line) and k = 0.25 (dashed line) and (b) k = 1.5
(solid line) and k = 0.75 (dashed line).

types of barrier excitations. Before turning to a discussion
of the (r, g) plot, however, we present, as an example, in
figure 2 plots of T (r → 0, g) as functions of g for the linear
media limit of the system. These give an idea of the type of
generally narrow resonant features that are found in the barrier
transmission. The various resonant transmissions agree well
with the Fabry–Perot condition given by g = 0.8519, 0.8646,
0.9022, 0.9628, 1.0402, 1.1215, 1.1857, 1.2104.

In figure 3 the positions of peaks of T in the (r, g) plane
are plotted for guided modes with fixed frequency ωac/2πc =
0.440 for wavenumber k = 2.90, 1.50, 0.75 and 0.25. The
frequency is chosen in the center of a stop band of the square
lattice photonic crystal located at 0.425 < ωac/2πc < 0.455.
A further discussion of the photonic crystal and its stop bands
is given in [44] and [51]. In figures 3(a)–(d) peaks are
shown with T > 0.60 while in figure 3(e) only peaks with
T = 1.00 are presented for the k = 2.90 system. From
figures 3(a) through (d) we find that changing the wavenumber
of the incident guided mode shifts and distorts many of the
features of the pattern of transmission peaks in the (r, g)

plane, but the overall appearance of ridges and lines in the
patterns do not change substantially. The transmission maxima
cluster together in the (r, g) plane, with excitations of the
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Figure 3. Plots of the peaks of the transmission coefficient, T , in the (r, g) plane. In (a) through (d) results are shown for peaks with T > 0.6
for: (a) k = 2.90 with gl = 1.2030, (b) k = 1.5 with gl = 0.9879, (c) k = 0.75 with gl = 0.8872, and (d) k = 0.25 with gl = 0.8559. In (e)
results are shown for k = 2.90 and T = 1.0. As per the text, regions of intrinsic localized modes are denoted ILM and regions of dark soliton
like modes are denoted D on the figures, and gl = 1/[1 + 2b cos(k)].

same type being found clustered together within the same
ridge or line in the pattern. In addition, the types of modes
associated with given general features of ridges and lines
generally do not change with changing wavenumbers. For a
comparison, the results in figure 3(e) indicate the regions of
perfect transmission. These are found to be much the same as
the T > 0.6 results in figure 3(a). This gives an indication
of the sensitivity of the (r, g) plot to the lower bound set on
the transmission maxima. The plots in figure 3 were made by
computing the transmission coefficient as a function of g for
a mesh of points along the r -axis, as per the discussions in

figure 2, and selecting out the maxima in T . We will focus in
the following on the patterns of the Fabry–Perot resonances,
intrinsic localized modes, and the dark soliton like excitations
found in the (r, g) plots.

In each of the plots, the seven lines starting at (0, g) and
extending into the range of r > 0 are Fabry–Perot resonances.
These modes are gradually renormalized by the increasing
nonlinearity of the barrier as r increases. The lowest three
of these modes are seen to vanish for r greater than a cutoff
maximum which is different for each mode. Regions of
intrinsic localized modes are found in the k = 2.90 plot for
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Table 1. Intrinsic localized mode field intensities, λ|En,0|2, in the barrier sites for n = 3, 2, 1, 0, −1, −2, −3 for selected values of (r, g) and
k.

Intrinsic localized modes

(r, g) k n = 3 n = 2 n = 1 n = 0 n = −1 n = −2 n = −3

(0.3, 0.7622) 2.90 0.0002 0.0046 0.0465 0.2303 0.0464 0.0046 0.0002
(0.2, 0.7021) 1.50 0.0001 0.0019 0.0384 0.3659 0.0383 0.0019 0.0001
(0.4, 0.7314) 0.75 0.0002 0.0030 0.0418 0.2995 0.0420 0.0031 0.0004
(0.6, 0.7478) 0.25 0.0005 0.0040 0.0445 0.2626 0.0443 0.0039 0.0004

Table 2. Dark soliton like mode field intensities, λ|En,0|2, in the barrier sites for n = 3, 2, 1, 0, −1, −2, −3 for selected values of (r, g) and
k.

Dark soliton like modes

(r, g) k n = 3 n = 2 n = 1 n = 0 n = −1 n = −2 n = −3

(9.6, 1.0939) 2.9 0.0933 0.0846 0.0608 0.0231 0.0278 0.0657 0.0872
(9.8, 1.0178) 2.9 0.1091 0.0224 0.0832 0.1575 0.1794 0.1844 0.1829
(9.9, 1.0018) 0.75 0.0675 0.1532 0.1583 0.0857 0.0420 0.1219 0.1043
(9.9, 0.9584) 0.75 0.0730 0.1077 0.0238 0.1077 0.0774 0.0673 0.1034
(9.9, 0.8957) 0.75 0.0821 0.0520 0.1353 0.0797 0.1926 0.2785 0.1684
(9.4, 0.9872) 0.25 0.0592 0.1182 0.0267 0.1057 0.1855 0.1786 0.0764
(10.5, 0.9937) 0.25 0.0713 0.1697 0.1758 0.0963 0.0300 0.1185 0.0681

0.2 < r < 0.8 and 0.75 < g < 0.87, in the k = 1.5 plot
for 0.1 < r < 1.50 and 0.65 < g < 0.87, in the k = 0.75
plot for 0.20 < r < 2.80 and 0.72 < g < 0.87, and in the
k = 0.25 plot for 0.4 < r < 4.5 and 0.74 < g < 0.87. In each
of figure 3 a notation ILM is placed to the right and adjacent to
the ridge of intrinsic localized modes. The general features in
(r, g) for the intrinsic localized mode solutions are maintained
with changing k, and in table 1 the intensity λ|En,0|2 for n = 3,
2, 1, 0, −1, −2, −3 within the barrier is presented for some
illustrative values of (r, g) and k. (Note that the low field
intensities at the barrier edges with field intensities peaking at
the center of the barrier are qualitatively similar to the field
distributions found in the classic work by Chen and Mills
for gap solitons in one-dimensional Kerr nonlinear photonic
crystals [54] and the λ|E0,0|2 peak values are similar to those
in the paper by Chen and Mills. The wavefunctions presented
are for the most highly peaked intrinsic localized modes for a
given k, and the peak intensities decrease relatively quickly for
modes with increasing values of g.) The intrinsic localized
mode branch of solutions begins at low values of g for a
minimum r �= 0 and increases to meet the branch of Fabry–
Perot modes having the lowest g values. These Fabry–Perot
modes are single peak excitation similar in form to the intrinsic
localized modes. The intensity maxima in λ|E |2 of the intrinsic
localized modes peaks, however, are significantly greater than
those of the Fabry–Perot modes. The existence of the intrinsic
localized modes are dependent on their modification of the
value of the nonlinear dielectric constant.

Regions of dark soliton like modes are found in the k =
2.90 plot for 8.0 < r < 10.5 and 0.9 < g < 1.1, in the
k = 0.75 plot for 9.0 < r < 10.0 and 0.9 < g < 1.0, and in
the k = 0.25 plot for 0.8 < r < 10.5 and 0.85 < g < 1.1. In
figure 3 a notation D is place near the edge of these regions. To
give a clearer view of the dark soliton like modes, in figure 4
an expanded view of the region in the k = 2.9 plot containing
these modes is shown. In figure 4 the four lines beginning

Figure 4. Expanded plot of figure 3(a) for the region containing dark
soliton like excitations. The dark soliton like modes are found in the
region r > 0.8 whereas the modes beginning in the figure at r = 6.0
and extending across the figure are Fabry–Perot modes.

at r = 6.0 and extending across the figure are Fabry–Perot
modes. The remaining modes all exhibit dark soliton like
wavefunctions and vanish below a minimum value of r �= 0. In
table 2 some representative intensity profiles within the barrier
material are presented for selected values of (r, g) and k. For
k = 2.9 a single intensity dip is observed within the barrier
materials, signifying the presence of the dark soliton like mode.
The band of such modes is absent in the k = 1.50 plot,
but then reappears for the lower k = 0.75 and 0.25 values.
Upon its reappearance the intensity profile may have more that
one dip. This is an indication of the effects of the change in
boundary conditions as the wavenumber of the incident guided
mode is decreased. A more detailed understanding of the
effects of guided mode dispersion on the intrinsic localized
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modes and dark soliton like modes can be obtained by treating
the dispersion within the particular part of the (r, g) plots
associated with these mode types.

Figure 5 presents a study of the transmission maxima
associated with intrinsic localized modes and dark soliton like
modes for varying wavenumbers of the incident guided modes.
For a fixed frequency, ωac/2πc = 0.440, which is located
at the center of a stop band of the two-dimensional photonic
crystal, the wavenumber k of these modes is plotted versus r
for a series of fixed values of g. Figure 5(a) gives results for
the intrinsic localized modes. Curves are plotted for g = 0.78,
0.80, and 0.82. Increasing g is seen to shift the curves to
the right in the plots. For all values of g the wavevector of
the exciting guided mode is found to gradually decrease with
increasing nonlinearity of the system. Figure 5(b) presents
results for the dark soliton like modes. Curves are plotted for
g = 1.01, 1.02, and 1.08. These values occur on two of the
features exhibiting dark soliton like solutions in figure 4. The
results for g = 1.01 and 1.02 exhibit monotonically decreasing
wavenumbers with increasing r , crossing the r = 10-axis
at k = 2.84 and 2.89, respectively. The ridge of solutions
containing the g = 1.01 and 1.02 solutions (see figure 4) is
smooth, with a gradual change in k with increasing r . This
accounts for the simple behavior observed in the k dispersion.
The results for g = 1.08, however, are more complicated
because of the sharper geometry displayed (see figure 4) by
the ridge of solutions containing it. In the case of the dark
soliton like modes, after their disappearance in the k = 1.50
plot, they reappear in the k = 0.75 and 0.25 plots with distorted
wavefunctions. For k < 1.50 in some cases multiple minima
may occur in the modes within the barrier media for the
reappearing ridges. The general conclusion is that increasing
the nonlinearity of the barrier media decreases the ks of the
intrinsic localized and dark soliton like modes.

Figure 6 presents a study of the transmission maxima
associated with intrinsic localized and dark soliton like modes
for fixed k and varying frequency of the incident guided modes.
For k = 2.9, the frequency ωac/2πc within the stop band
region (i.e., the region 0.425 < ωac/2πc < 0.455) of the two-
dimensional photonic crystal of these modes is plotted versus
r . A series of curves for fixed values of g are shown. In making
the plot we have used the result from [52] for the variation of b
with frequency given by

b = 0.300 + 6.03(ωac/2πc − 0.440)

3.52 + 41.82(ωac/2πc − 0.440)
(7)

while maintaining λx2 = 0.001 fixed. Appendix contains a
brief discussion equation (7) which is also discussed in more
detain in [52].

Figure 6(a) gives results for the intrinsic localized modes.
Curves are plotted for g = 0.78, 0.80, and 0.82. Increasing g is
seen to shift the curves to the right in the plots. The frequency
is observed to increase rapidly and monotonically with
increasing nonlinearity in the barrier materials. Figure 6(b)
presents results for the dark soliton like modes for g = 1.01,
1.02, 1.08. The frequencies needed to excite the dark soliton
like modes are found to steadily increase with increasing
nonlinearity. The curves crossing the r = 9.7-axis are from top

Figure 5. Plot of k versus r for fixed ωac/2πc = 0.440. In
(a) results are presented for the intrinsic localized modes. The curves
are for g = 0.78, 0.80, and 0.82 such that curves of increasing g are
shifted to the right. In (b) results are presented for the dark soliton
like modes. The curves are for g = 1.01 and 1.02 which cross the
r = 10-axis at k = 2.84 and 2.89, respectively. The remaining
results are of g = 1.08. For all curves λx2 = 0.001.

to bottom for g = 1.08, 1.01, and 1.02. The general conclusion
is that increasing the nonlinearity of the barrier media increases
the frequency of the intrinsic localized and dark soliton like
solutions.

3. Conclusions

The transmission in a Kerr nonlinear barrier has been studied
as a function of the parameters characterizing the nonlinearity.
It is found that: (1) the (r, g) plane has a patterning
of transmission coefficient peaks that group into various
ridges, and the different ridges can be identified with barrier
wavefunctions of a specific field geometry. The wavefunctions
are classified as evolving from the Fabry–Perot modes of the
linear media system, various intrinsic localized modes whose
generation is dependent on the nonlinearity, and other types
of resonantly excited modes in the barrier. (2) The general
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Figure 6. Plot of ωac/2πc versus r for fixed k = 2.90. In (a) results
are presented for the intrinsic localized modes. The curves are for
g = 0.78, 0.80, and 0.82 such that curves of increasing g are shifted
to the right. In (b) results are presented for the dark soliton like
modes. The curves are for g = 1.01, 1.02, and 1.08. The curves
crossing the r = 9.7-axis are from top to bottom for g = 1.08, 1.01,
and 1.02. For all curves λx2 = 0.001. Results are presented for
frequencies within the region of the photonic crystal stop band at
0.425 < ωac/2πc < 0.455.

feature of the (r, g) plot of transmission peaks remain the same
as k of the incident guided modes is changed. The types of
modes associated with these features also remains unchanged
with changing k. (3) The intrinsic localized and dark soliton
like modes, in general, exhibit a monotonic dispersion in k and
ωac/2πc of the incident guided modes which are qualitatively
similar for both type of modes.

The interest in the (r, g) plot and its changes with incident
guided mode dispersion are two fold. From the standpoint
of theory the plot gives a summary of mode types that can
be excited within the barrier and the effects of dispersion on
these excitations. This gives an indication of what types of
modes may exist in the infinite Kerr waveguide. From the
technological standpoint, the plot gives technologists an idea
of the conditions needed in a system to create, for example,
intrinsic localized modes. These type of modes may have

Figure 7. Plot of transmission maxima for a barrier of five Kerr sites
with T > 0.75 peaks in the (r, g) plane for k = 3.0 [1]. This is for
comparison with the results presented in figure 3(a) for a seven site
barrier. As in figure 3 regions of intrinsic localized modes are
denoted ILM and regions of dark soliton like modes are denoted D.

potential applications in switching devises, optical transistors,
or in the enhancement of electromagnetic fields within a Kerr
nonlinear media [4–8].

Finally, we note that the qualitative features of the
(r, g) patterns, plotted at the Brillouin zone edge for a
single frequency in the center of the photonic crystal stop
band, for the waveguide with five Kerr barrier sites [1] are
similar to those in the current plot for the seven site barrier.
For comparison results from [1] for the five site barrier
transmission are reproduced in figure 7 using the notation of
this paper. From [1] the values of the parameters used to
obtain the data in figure 7 are the same as those used in this
paper except that k = 3.0, λx2 = 0.005, and maxima with
T > 0.75 have been retained. Again the regions of intrinsic
localized modes and dark soliton like modes are indicated
in the figure using the notation of our figure 3. It should
be noted that, due to the reduction in the number of barrier
sites, the number of Fabry–Perot modes beginning at r → 0
and extending across the range of increasing r are reduced
from those found for the seven site barrier, but the regions
of intrinsic localized modes and dark soliton like excitations
appear qualitatively similar to the results in figure 3(a) of
this paper. In general, the comparison indicates the utility
and robustness of our classification scheme in understanding
the development of nonlinear modes within finite nonlinear
barriers of dynamical systems.

The point of interest in this paper is the (r, g) plot of
resonantly excited barrier modes. The plot shows how the
various types of barrier excitations are related to one another
and where to expect to find them in this space and presents
wavefunctions similar to those found in 1d photonic crystal
systems (i.e., gap solitons and dark solitons). It is emphasized
in the present work that this representation is stable in its
appearance and the relation of the different types of modes to
one another as the wavenumber and frequency of the incident

8



J. Phys.: Condens. Matter 21 (2009) 485302 A R McGurn

guided mode is changed. The barrier difference equations
are generalizations of the well known tight binding model
to include a basic nonlinear form and may be applicable to
other types of nonlinear systems (e.g., vibrational, spin models,
etc). It is hoped, however, that the results presented here
will stimulate experimental and further theoretical studies of
the excitations in a variety of photonic crystal waveguide
systems as well as give the reader an indication of the types
of excitations that may exist in these types of systems and an
idea of the relative conditions needed for their observation.
Future useful generalization of this work would include
systems that have more general cylinder geometries requiring
the applications of FDTD methods [5] and considerations of
further neighbor couplings [18, 26]. Computer simulation
work would be helpful in applications to engineering systems
that can then be realized experimentally and taylored in
materials and geometry to look for specific types of modal
excitations within the barrier media. In addition, there should
be applications to other physical systems. Our previous work
using these methods have included studies of the logistic
equation which yields solutions similar to those found in the
photonic crystal model. This suggests a certain robustness of
the ideas introduced here for the study of nonlinear mappings.
Of course the best would be an indication of experimental
results giving a classification of the resonant excitations of a
system in terms of the scheme given above. The purpose of
this paper is to present a classification scheme, show how it
could function, and stimulate similar investigations.

Appendix

A brief summary of the origin of the difference equation
formulation is given here for the case in which the electric field
of the modes is polarized with the electric field parallel to the
axes of the dielectric cylinders. For more details the reader is
referred to [52], and [20].

The photonic crystal is described by a periodic dielectric
function ε(�x‖) where �x‖ is in the plane of the Bravais lattice,
perpendicular to the axes of the dielectric cylinders. A
waveguide is defined by introducing a change in the dielectric
constant, δε(�x‖), in a row of dielectric cylinders. Using the
Helmholtz equation for the electric fields of the modes and
exact methods of Green’s functions [55, 56], the electric fields
of the waveguide modes satisfy [52, 20]

E(�x‖) = ω2

c2

∫
d2x ′

‖G(�x‖, �x ′‖)δε( �x ′‖)E( �x ′‖) (A.1)

exactly. (For additional references on applications of exact
Green’s functions methods in photonic crystals, please,
see [57–59].) Here G(�x‖, �x ′‖) is the Green’s function of
the Helmholtz equations for the photonic crystal described
by ε(�x‖). The evaluation of the Green’s functions for the
system addressed in this paper is discussed in [57, 58] where
it is shown that the Green’s functions for frequencies within
the photonic crystal stop band exhibit an overall rapid decay
with increasing separation of �x‖ and �x ′‖ within the system,
particularly for multiple separations of the lattice constant [19].
(Note that this is similar to the behavior found in the Green’s

functions of deep level donor and accepter impurity modes in
semi-conductors [60, 61] where the impurity frequencies are
(as per our discussions) located at the center of the stop band.)
The stop band decay is due to the non-propagating nature of
the wavefunctions for frequencies within the stop band, and
is different from the behavior shown at pass band frequencies.
If δε(�x‖) is non-zero only in a small region about the axes of
cylinders forming the waveguide channel and E(�x‖) changes
slowly over δε(�x‖) in each such cylinder (Note: this feature of
our numerical evaluation was checked for the results presented
in this paper.), then equation (A.1) reduces (for a waveguide
along the x-axis for which only on site and nearest neighbor
site interactions are significant) to a set of difference equations
given by

En,0 = gp[ fn,0 En,0+b( fn+1,0 En+1,0+ fn−1,0 En−1,0)]. (A.2)

In equation (A.2), fn,0 = 1 + λ|En,0|2 with λ = 0 for
linear dielectric media, gp = ω2

c2

∫
d2x ′

‖G(0, �x ′‖)δε( �x ′‖) where
the integral is over the cylinder centered at (0, 0), and b =∫

d2x ′
‖G(a0î , �x ′‖)δε( �x ′‖)/

∫
d2x ′

‖G(0, �x ′‖)δε( �x ′‖) where the
integrals are computed as in the case of gp and a0 is the lattice
constant of the waveguide. In the evaluation of all of the
integrals in the definitions of gp and b, λ = 0. Both the Green’s
functions and their space integrals were evaluated from the
eigenvalues and eigenvectors of the electromagnetic equations
of motion for the photonic crystal [57–59] using methods that
are common in the study of ionic impurities in metals [60, 61].

The parameters of the photonic crystal used in this
paper are the same as those used in a number of previous
publications, and we refer the read to these for a more detailed
discussion [52]. The two-dimensional photonic crystal is a
square lattice with cylinders of dielectric constant ε = 9 and
radius R = 0.377 96ac where ac is the lattice constant of the
square lattice, and waveguide and barrier impurity materials
occur in a square cross section of side 0.02ac. Within the
0.425 < ωac/2πc < 0.455 region of stop band of the photonic
crystal, it was shown in [52] that b in equation (A.2) is given
by the formula

b
( ωac

2πc

)
= 0.300 + 6.03

(
ωac
2πc − 0.440

)
3.52 + 41.82

(
ωac
2πc − 0.440

) . (A.3)

The waveguide is taken along the x-axis of the square lattice
such that the lattice constant of the waveguide is a0 = ac.
The dielectric constant of the Kerr media is taken of a generic
isotropic form so that a semi-quantitative indication of the
effects of nonlinearity are given. This is not an uncommon
thing to do in theoretical treatments in nonlinear optics, and
it is hoped that the results presented will stimulate studies on
specific systems in which more detailed considerations of the
form of the dielectric constants may be made.

For the waveguides considered in this paper (composed
of identical replacement cylinders of linear dielectric media)
we find, from equation (A.1) under the conditions discussed
above, that there is a simple relationship for the parameters
gp and b. Consider one of the identical replacement cylinders
for δε(�x‖) constant (i.e., δε(�x‖) = δε0) over the cross sectional
area δA in the replacement cylinder. The coefficient b, given by
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equation (A.3), is independent of δε0 and δA, only depending
on frequency and wavenumber. The coefficient gp, however is
proportional to δε0δA so that our result for gl in the discussions
immediately below equation (6) obeys gl ∝ δε0δA.
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